
67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.  

Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-16-D1.2.1                           Page 1 of 6 

IAC-16-D1.2.1 (34366) 

 

Automated Design of CubeSats and Small Spacecrafts 

 

Himangshu Kalita
a
, Jekanthan Thangavelautham

b*
 

 
a
 School of Energy, Matter and Transport Engineering, Arizona State University, Tempe, Arizona 85281, United 

States of America  
b 
School of Earth and Space Exploration , Arizona State University, Tempe, Arizona 85281, United States of America, 

jekan@asu.edu  

* Corresponding Author 

 

Abstract 

The miniaturization of electronics, sensors and actuators has enabled the growing use of CubeSats and sub-20 kg 

spacecraft. Their reduced mass and volume has the potential to translate into significant reductions in required 

propellant and launch mass for interplanetary missions, earth observation and for astrophysics applications. There is 

an important need to optimize the design of these spacecraft to better ascertain their maximal capabilities by finding 

optimized solution, where mass, volume and power is a premium. Current spacecraft design methods require a team 

of experts, who use their engineering experience and judgement to develop a spacecraft design. Such an approach 

can miss innovative designs not thought of by a human design team. In this work we present a compelling alternative 

approach that extends the capabilities of a spacecraft engineering design team to search for and identify near-optimal 

solutions using machine learning. The approach enables automated design of a spacecraft that requires specifying 

quantitative goals, requiring reaching a target location or operating at a predetermined orbit for a required time. Next 

a virtual warehouse of components is specified that be selected to produce a candidate design. Candidate designs are 

produced using an artificial Darwinian approach, where fittest design survives and ’reproduce’, while unfit 

individuals are culled off. Our past work in space robotic has produced systems designs and controllers that are 

human competitive. Finding a near-optimal solution presents vast improvements over a solution obtained through 

engineering judgment and point design alone. Through this design approach, we evaluate a LEO- deployed 6U 

CubeSat that needs to generate a required average power. The approach identifies credible solution that will need 

further study to determine its implementation feasibility. The approach shows a credible pathway to identify and 

evaluate many more candidate designs than it would be otherwise possible with a human design team alone. 
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1. Introduction 

Space systems perform important tasks, including 

planetary exploration, astronomical observations, earth 

observation, technology demonstrations and 

communication in space.  A typical spacecraft may 

undergo extreme changes in temperature, cosmic and 

solar particle induced radiation, withstand the vacuum 

of space and handle launch shock and vibrations.  

Designing a spacecraft is a long, expensive endeavour, 

where a system is tailor designed for a specific mission 

at hand.    A new design approach is required that 

shortens the spacecraft design process. 

Rapid technology advancement in the CubeSat and 

small satellite industry has led to standards defining 

mass, volume and launch specifications. There has been 

rapid development of modular, interchangeable 

spacecraft components, including computer electronics, 

science instruments, power supplies, communication 

device to name a few.   In this paper, we propose 

automated design of a spacecraft utilizing modular, 

interchangeable components.   In our approach, a 

numerical goal function is specified, along with 

constraints.  An Evolutionary Algorithm (EA) is used to 

generate a population of candidate solutions, where the 

fittest individual mate and mutate, while unfit 

individuals are culled (Fig. 1).  The candidate 

population is evolved for hundreds of generations until 

the fittest individual in the population meets a desired 

performance metric.   
 

 
Fig. 1. Automated Design of Space Systems. 
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With this approach, finding sets of optimal designs 

that represent the trade-offs among conflicting 

objectives, such as mass, cost, and performance, can be 

very useful in making informed system design 

decisions. Automated design of engineering systems is 

not new. Computationally derived evolutionary designs 

have shown competitive advantages over human created 

designs in terms of performance, creativity and 

robustness. Researchers have been investigating 

evolutionary design and optimization for years and 

several satellite subsystems have been investigated 

including antennas [1], power system [2] and low-thrust 

orbit transfer [3]. This process also has been 

successfully applied to design of mobile robots [6] and 

water desalination systems [7].   

Automated design is in sharp contrast to current 

spacecraft design methods that require a team of 

experts, who use their engineering experience and 

judgement to develop a spacecraft design. The initial 

identification of candidate designs is based on 

individual judgement and is often limited to dozens of 

designs. It is time and labor intensive and require 

significant expertise and experience. Wrong 

assumptions may lead to a sub-optimal design or worse 

an intractable solution.   

There is typically no systematic approach to evaluate 

the whole design space that can meet the defined goals 

and satisfy the constraints. The principle limiting factor 

is the ability for a team to fully evaluate a candidate 

spacecraft design and quantitatively determine its 

strengths and limitations. Such an approach can miss 

innovative designs not thought of by the design team. 

Evolutionary design techniques can overcome these 

limitations by searching the design space and 

automatically finding effective solutions that would 

ordinarily not be found. In the following sections, we 

present background and related work on automated 

design (Section 2), description of the automated design 

(Section 3), results and discussion (Section 4), followed 

by conclusions and future work (Section 5). 

 

2. Background and Related Work  

Evolutionary Algorithms (EAs) are a stochastic 

search method that mimic the metaphor of natural 

biological evolution. It provides an approach to learning 

that is based loosely on Darwinian evolution. 

Evolutionary Algorithms operate on a population of 

potential solutions applying the principle of survival of 

the fittest to produce a solution. At each generation, a 

new population is created by the process of selecting 

individuals by their highest fitness in the problem 

domain and breeding them together using operators, 

namely crossover and mutation borrowed from natural 

genetics. In theory, this process leads to the evolution of 

populations of individuals that are better suited to their 

environment than the individuals that they were created 

from, just as in natural adaptation [4]. 

Evolutionary algorithms model natural processes, 

such as selection, crossover and mutation. Fig. 2 shows 

the structure of a simple Evolutionary Algorithm (EA). 

Evolutionary Algorithms have been used to automate 

the process of design in various fields spanning 

robotics, communication electronics and spacecraft 

power systems [10-12]. This approach produces near 

optimal solutions when successful, which presents a big 

improvement over a solution obtained through 

engineering judgement and point design. The solution 

obtained needs further study to determine its 

implementation feasibility. 

 

 

 
Fig. 2. Evolutionary Algorithm Structure 

 

Our approach to the spacecraft design problem is 

modelled after the knapsack problem. Optimization of 

the knapsack problem is considered an NP hard problem.  

In the knapsack problem, the goal is fill a knapsack with 

as many books, so that the free volume is minimized 

and mass maximized.  In our spacecraft design problem, 

the focus is effective packaging of components within a 

specified mass and volume constraint.  Using this 

approach as we will show later, the gene specifies what 
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Subsystem 

Specifier 

Type of 

Components 

Type of 

SP 
No. of Solar Panels 

X Y T B1 B2 B3 B4 E1 E2 E3 E4 E5 E6 E7 E8 V1 V2 V3 V4 

Alphabets 

[C,O,X,B,A,P,T,S] 

Alphabets 

[a,b,c,….,j] 

Alphabets 

[b,e,v] 
Integers [0 1] Integers [0 1 2 3] Integers [0 1 2 3] 

 

Fig. 3. Description of Gene of CubeSat  

 
components that are to be packaged inside the 

spacecraft.  This keeps the gene and design process 

simple and produces results fast using desktop 

computers.  There are also other approaches to 

automated design and this includes use of variable 

length generative coding schemes [8] that generates 

construction program to design the gene.  Other bio-

inspired approaches model morphogenesis [9]. 

 

3. Automated Space Systems Design 

      In this paper we propose to use Evolutionary 

Algorithms to automate the process of design of 

CubeSat. We start with the design of a 6U in LEO. The 

population in EAs are often represented by bit strings, 

so that they can be easily manipulated by genetic 

operators such as crossover and mutation. In this paper 

the population is represented by strings of letters and 

numbers with each letter representing a component of 

the CubeSat and each number representing its location, 

orientation or count (see Fig. 3). The subsystem 

specifier X distinguishes the different components of 

the CubeSat namely Antenna, OBC, Structure, Battery, 

Reaction Wheels, Payload, Thruster and Solar Panels. Y 

determines the type of components in the satellite with 

different mass, cost, dimensions, performance parameter 

and manufacturer. T determines the type of solar panel 

used in the design. It differentiates between body 

mounted panels and deployable (edge mounted and 

vertex mounted) panels. The gene then describes the 

number of panels mounted on its body, edge and 

vertices. 

The initial set of population is created randomly 

which then passes through a filter that filters out the 

CubeSat population with missing subsystem. The rest 

then passes through the fitness function. The fitness 

function defines the criterion for ranking potential 

populations and for probabilistically selecting them for 

inclusion in the next generation of population. It 

calculates the power produced by the respective designs, 

its mass and cost and then normalises it to a range of 0 

to 1. For power 1 represents the highest power that the 

CubeSat is capable of producing and 0 represents the 

minimum power that it can produce. Similarly, for mass 

and cost 1 represents the minimum mass, cost and 0 

represents the maximum mass, cost. The normalized 

fitness for power, mass and cost are then multiplied to 

calculate the overall fitness of the particular design. The 

designs are then ranked in descending order according 

to their overall fitness value. Based on the ranking top 

50% individuals are selected from the entire population. 

The selected population then undergoes crossover. The 

crossover operator produces two new offspring from 

two parent strings, by copying selected part of the string 

from each parent. After crossover operator the 

population undergoes the mutation operator. The 

mutation operator produces small random changes to 

the string by choosing a single element of the string at 

random, then changing its value. The mutation operator 

produces offspring from a single parent. We have 

considered a mutation rate of 20% for the evolutionary 

algorithm. 

After mutation, the fitness of the resultant 

population is checked and if the 

optimization/termination criteria are met, the algorithm 

stops and the fittest individuals are produced. If not the 

whole algorithm runs again until the fittest individuals 

are produced. In our case for optimizing the solar panel 

configuration, we have considered the different types of 

solar panels commercially available. Based on the 

power, cost, volume and mass requirement the EA 

provides the optimized configuration of the solar panels. 

Moreover, it calculates the capacity of battery to be used 

based on the power produced by the solar panels. 

 

3.1 Discipline Models 

This subsection describes the models for all the 

discipline in a 6U CubeSat for calculating the power 

produced in a LEO orbit. 

 

3.1.1 Orbit Dynamics 

The orbit-dynamics discipline computes the Earth-

to-satellite and Earth-to-Sun position vector in ECI 

frame according to equation (1). The J2 and J3 terms 

were considered because of their effect to rotate orbit 

plane on a scale of months. The orbit equation was 

solved using a Runge-Kutta Method (ode45 in Matlab) 

[5]. 

 

𝑟 =  −
𝜇

𝑟3 𝑟 −
3𝜇𝐽2𝑅𝑒

2

2𝑟5 [(1 −
5𝑟𝑧

2

𝑟2 ) 𝑟 + 2𝑟𝑧 �̂�] −

               
5𝜇𝐽3𝑅𝑒

3

2𝑟7 [(3𝑟𝑧 −
7𝑟𝑧

3

𝑟2 ) 𝑟 + (3𝑟𝑧 −
3𝑟2

5𝑟𝑧
) 𝑟𝑧�̂�]       (1) 

 

3.1.2 Attitude Dynamics 

The attitude of the satellite is needed to be calculated 

to know which side of the satellite is facing the sun. At 

any given time instance, the attitude is determined by 

applying the rotations from the ECI frame to the actual 

body-fixed frame. We modelled only the reaction wheel 
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for actuation. The required inputs are computed from 

the satellite’s angular-velocity profile. We do this by 

applying conservation of angular momentum to the 

satellite and reaction wheel system, expressed by setting 

the time derivative of the total angular momentum to 

zero according to equation (2) [5]. 
 

�̇⃗⃗� =  𝐽𝐵 ∙ �̇⃗⃗⃗�𝐵 + �⃗⃗⃗�𝐵 × (𝐽𝐵 ∙ �⃗⃗⃗�𝐵) + 𝐽𝑅𝑊 ∙ �̇⃗⃗⃗�𝑅𝑊 +
                �⃗⃗⃗�𝐵 × (𝐽𝑅𝑊 ∙ �⃗⃗⃗�𝑅𝑊) = 0                              (2) 
 

3.1.3 Cell Illumination 

The cell-illumination discipline models the area of 

each solar panel that is exposed to the Sun, projected 

onto the plane normal to the Sun’s incidence. First we 

calculate the line-of-sight variable LOS, which is 

essentially a multiplier for the exposed areas. It is 0 if 

the satellite is behind the Earth and 1 otherwise [5]. The 

exposed area is calculated by taking the dot product of 

the rotation matrix from ECI frame to the body-fixed 

frame with the Earth-Sun unit vector and multiplying 

with the total area along x, y and z axis and the LOS to 

to get the resultant exposed area. 

 

3.1.4 Solar Power 

The solar power produced at each time instant can 

be calculated by multiplying the solar constant with 

solar cell efficiency and total exposed area as shown in 

equation (3). 
 

     𝑃 = 𝑞𝑠𝑜𝑙 × 𝜂𝑠𝑜𝑙 × 𝐴𝑒𝑥𝑝                                  (3) 
 

4. Results and Discussion  

The initial population is produced randomly and the 

fitness function for required power output, mass and 

cost defined the EA evolves the initial design to an 

optimized design that increases the power and reduces 

the mass and cost of the CubeSat.  Fig. 4 shows the 

snapshots of the EA over 100 generations to produce the 

evolved design that can produce an output of 88W. Fig. 

5 shows the average power produced in a LEO orbit by 

the fittest individual of each generation. It is clear that 

the EA evolves from the initial design of 33W to a final 

design of 81W. It can also be seen that the best design 

over 100 generations is able to produce 88W. 

 

 

 

 
Fig. 4. Evolution of the design from 33W to 88W 

 

 
Fig. 5. Plot between Average Power and No. of 

Generations 

 
Fig. 6. Plot between Total Mass and No. of Generations 

 

    Fig. 6 and 7 shows the total mass and cost of the 

CubeSat designs through their evolution over 100 

generations. The maximum mass and cost for a design 

that can produce a maximum of 90W is around 10.2 kg 

and $247,500 respectively. However, the EA optimises 

the three parameters and produces the fittest individuals. 

It is clearly evident from the three graphs (see Fig.5, 

Fig. 6 and Fig. 7) that the algorithm evolves the design 

such that the power output is maximised keeping mass 

and cost of the spacecraft minimised. 

    Fig. 8, 9 and 10 shows how the mean of average 

power, total mass and total cost of each generation 

changes. It can be clearly seen that the mean value for 

average power generation increases while that of total 

mass and cost decreases as the EA optimises the fitness 

function. The evolutionary process increases the mean 

fitness of each generation eliminating the unfit 

individuals and keeping the fittest individuals thus 

converging towards the population with the fittest 

individuals.  
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Fig. 7. Plot between Total Cost and No. of Generations 

 
Fig. 8. Plot between Mean of Average Power and No. of 

Generations 

 
Fig. 9. Plot between Mean of Total Mass and No. of 

Generations 

 
Fig. 10. Plot between Mean of Total Cost and No. of 

Generations 

 

     Fig. 11 shows the overall fitness (considering power, 

mass and cost together) of the best individuals of each 

generation. Here overall fitness is calculated within a 

range of 0-1, 1 representing the fittest individual and 0 

representing the most unfit individual. It is clearly 

evident that the evolution starts from a design with 

minimum fitness and gradually evolves to a design with 

better fitness value. 

     This method of automatically designing CubeSats 

using Evolutionary Algorithm generates various near 

optimal designs which presents vast improvements over 

a solution obtained through engineering judgement and 

point design. These optimised designs will need further 

study to determine its implementation feasibility. This 

approach can also be used to design other subsystems of 

a CubeSat. 

 

 
Fig. 11. Plot between Fitness of best Individual and No. 

of Generations 
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5. Conclusions  

Evolutionary Algorithms have been successfully 

applied in finding near-optimal CubeSat designs.  The 

approach has the potential for producing designs that 

maximize power while minimizing cost and mass. Our 

early experiments show promising results, with 

increasingly sophisticated designs that maximize power 

while reducing mass and cost. Usually trade studies are 

conducted by engineers to create mission concepts with 

different trade-off solutions for mass, cost, volume, 

performance and risk. Automated design using 

Evolutionary Algorithm speeds up the design process 

and provides with a better basis to make more detailed 

system architecture and design decisions with 

confidence. 

 

Appendix A (Data for Discipline Models) 

     (∙⃗) = Vector 

     (∙)̂ = Unit vector 

     𝐴𝑒𝑥𝑝 = Exposed Area to Sun 

     𝐽 = Mass moment of inertia matrix, kg.m
2 

     𝐿 = Angular moment vector, kg.m
2
/s 

     LOS = Satellite-to-Sun line of sight 

     P = Power, W 

     𝑟 = Position vector norm, km 

      𝑟⃗⃗⃗ = Position vector, km 

     𝜔 = Angular velocity vector, 1/s 

J2 = 1.08263 × 10
-3

  

J3 = -2.51 × 10
-6

 

𝜇 = 398600.44 km
3
s

-2
 

Re = 6378.137 km 

𝑞𝑠𝑜𝑙  = 1.36 × 10
3
 W/m

2
 

       𝜂𝑠𝑜𝑙  = 0.284 
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